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introduction

* Study mechanism ¢ o um

with non-equilibrium quantum field theorym model

which is CP violating and breaks the conservation of
particle number.

*In flat space and in thermal equilibrium, we know that
particle number production doesn’t happen.

*\We show time evolution of the contribution from the
decay process.
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*The rate difference between top and
bottom processes produces the net particle
number.

*The heavy neutral scalar N has particle
number 0.

*The light complex scalar ® and ®f have
particle number-1and1.

*The relatively phase of A and B?isacp
violating phase.



Real field formalism

Rewrite the Lagrangian by
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Masses of real scalar are splitted into m1 and m2 by the influence
interaction term of B.



Green function and Particle number
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Current divergence=production rate of particle number.
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Density matrix in initial time
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Hamiltonian in Initial time commute particle number N. N — d3:1;j0(X)
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2Pl Effective action
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The stationary condition of the I leads to the Schwinger-Dyson equation.
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Case without interaction terms
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We use these green functions in perturbative calculation.



Boltzmann equation

0u(j" (X)) = 2B*G13(X, X) S
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We set chemical potential u=0 and focus on the particle number
production from the interaction Hamiltonian.
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Off diagonal element of green function vanish.



Solving Boltzmann equation
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Insert Green function for free Hamiltonian to the Boltzmann equation.



Approximation

It is hard to solve this equation exactly. \
‘

We introduce approximation which is good for large time behavior.

Consider the case of the small mass difference of ®1and ®2.
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We are interested in large time behavior of production rate.

B2 is very small.
X% is very large.

Define the New timet. ¢+ — B2X©

Terms which proportional to B2 can’t survive without X°.
The terms with B, only the B2 X° can survive.
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Only the process can survive after large time.



After large time approximation

By using large time approxima
equation.
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We going to compute red part.

The definition of energy w.

w(k) = \/m?b + k2



Numerical result(from red part)

e variation of the productionra
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However
*We know Green function’s form after the approximation which is same as
previous calculation.
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B . = [(nk + Dny(hp + 1) — np(ny + l)np]

We have checked production rate cancel each other between decay and inverse decay
process. But we haven’t understood contribution from decay process.(Future problem)



production in the model which'is CP vio

*We show that time evolution and mechanism of the
particle number production in each process.

*The sum of the contribution from decay process and
inverse decay process vanishes. This is the expected
result, since we consider the case for thermal equilibrium
in flat-space.

*Next step, we will study the model in curved space-time
(non-equilibrium). We will also study the model with
fermion.



